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ABSTRACT

In this paper, we present a probabilistic algorithm for visual track-
ing that incorporates robust template matching and incremental sub-
space update. There are two template matching methods used in the
tracker: one is robust to small perturbation and the other to back-
ground clutter. Each method yields a probability of matching. Fur-
ther, the templates are modeled using mixed probabilities and up-
dated once the templates in the library cannot capture the variation
of object appearance. We also model the tracking history using a
nonlinear subspace that is described by probabilistic kernel princi-
pal components analysis, which provides a third probability. The
most-recent tracking result is added to the nonlinear subspace incre-
mentally. This update is performed efficiently by augmenting the
kernel Gram matrix with one row and one column. The product of
the three probabilities is defined as the observation likelihood used
in a particle filter to derive the tracking result. Experimental results
demonstrate the efficiency and effectiveness of the proposed algo-
rithm.

1. INTRODUCTION

Visual tracking is a critical task in many computer vision applica-
tions such as surveillance, robotics, human computer interaction, ve-
hicle tracking and medical imaging, etc. The challenges in design-
ing a robust visual tracking algorithm are caused by the presence of
noise, occlusion, background clutter and the dynamic motion of tar-
get objects. A variety of tracking algorithms have been proposed to
overcome these difficulties.

Early works used the sum of squared difference (SSD) as a cost
function in the tracking problem [1]. A gradient descent algorithm
was most commonly used to find the minimum. Subsequently, more
robust similarity measures have been applied and the mean-shift al-
gorithm or other optimization techniques utilized to find the optimal
solution [2]. The graph-cut algorithm was also used for tracking by
computing an illumination invariant optical flow field [3]. Subspace
representations were successfully used for tracking by finding the
minimum distance from the tracking object to the subspace spanned
by the training data or previous tracking results [4, 5]. In [6, 7],
tracking was implemented by maximizing the difference between
the foreground and background. Recently, Porikli et al [8] propose
an algorithm using a covariance based object description that fuses
different types of features and modalities to successfully track non-
rigid objects.

Stochastic tracking approaches reduce to an estimation problem,
e.g., estimating the state parameter of a time series state space model.
The problem is formulated in probabilistic terms. Early works used
Kalman filter to provide optimal solutions for the linear Gaussian
model. The particle filter, also known as the sequential Monte Carlo

method [9], is the most popular approach which recursively approx-
imates the posterior distribution of the state parameter. It has been
developed in the computer vision community and applied to tracking
problems under the name Condensation [10].

1.1. Algorithm Overview

This paper proposes a robust and adaptive appearance model for
tracking noisy and complex objects. For each frame, S samples
of the state parameter {x1, x2, · · · , xS} are drawn from a Gaus-
sian distribution, conditioned on the previous state. State samples
xi correspond to the windows Wi at various locations of different
sizes and orientations in the image. The cropped windows, which
are tracking result candidates, are compared with the templates to
give the probabilities of template matching. Two template matching
methods are suggested. One computes the Image Euclidean distance
that is robust to small perturbation; the other computes the Image
Weighted distance that is robust to background clutter. Both dis-
tances assign a weight based on the difference between pixel inten-
sities. A third probability pKPCA is provided by the probabilistic
kernel Principal Component Analysis (PCA) that models a nonlin-
ear subspace of the tracking history. The window which has the
maximum product of the three probabilities is set as the tracking
result in the current frame. The combination of these separate track-
ing algorithms has been justified in [11]. After tracking, we update
the models to adapt to the most-recent appearance change. For the
two template matching methods, the template library is modeled us-
ing mixed probabilities. The template with the smallest weight is
replaced by the most-recent tracking result when the probability is
below some threshold. The weight for each mixture component is
updated adaptively. For the nonlinear subspace modeling of tracking
history, the most-recent tracking result is added by augmenting the
kernel Gram matrix with one more row and column. The standard
particle filter algorithm is then used: the samples are resampled to
eliminate particles with small importance weights and concentrate
on particles with large weights. Tracking then proceeds to the next
frame to repeat the same procedure.

The remainder of the paper is organized as follows. In the next
section, we review the particle filter algorithm. Section 3 details the
two template matching algorithms and how to update the template
library. Section 4 presents the probabilistic kernel PCA used for
modeling the tracking history. Experimental results are reported in
section 5. We conclude this paper with a short summary.

2. PARTICLE FILTER

The particle filter is a Bayesian sequential importance sampling tech-
nique for estimating posterior distribution of state variables charac-
terizing a dynamic system. It consists of essentially two steps: pre-
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diction and update. The predicting distribution of xt given all avail-
able observations z1:t−1 = {z1, z2, · · · , zt−1} up to time t − 1,
denoted by p(xt|z1:t−1), is recursively computed as

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (1)

At time t, the observation zt is available and the state vector is up-
dated using the Bayes’s rule

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(2)

where p(zt|xt) denotes the observation likelihood.
In the particle filter, the posterior p(xt|z1:t) is approximated by

a finite set of N samples {xi
t}i=1,··· ,N with importance weights wi

t.
The candidate samples xi

t are drawn from an importance distribution
q(xt|x1:t−1, z1:t) and the weights of the samples are updated as

wi
t = wi

t−1

p(zt|xi
t)p(xi

t|xi
t−1)

q(xt|x1:t−1, z1:t)
(3)

3. TEMPLATE MATCHING

Template tracking works by exacting a template from the first frame
and finding the object of interest in successive frames. SSD was used
to calculate the distance between the template and the image. It gives
the same weight to each pixel and is not robust to small perturbation
and background clutter. The template has a specific shape, ellipse
or rectangle, which inevitably includes some background pixels if
the object is not perfectly in that shape or the tracker does not locate
the object precisely. If the background has similar appearance as
the object due to the illumination change, low contrast and noise,
the appearance model cannot distinguish it from the background and
tracking is prone to drift away. A fixed appearance template is not
sufficient to handle recently changes in the video, while a rapidly
changing model is susceptible to drift. In the algorithm proposed
in [12], the updated template is aligned with the first template to
obtain the final update in order to eliminate drift. Here we propose a
robust template matching algorithm that handles small perturbation,
background clutter and updating the template wisely.

3.1. Image Euclidean Distance

Wang et al. [13] propose a new Euclidean distance for images,
which is dubbed as Image Euclidean Distance(IMED). Unlike the
traditional Euclidean distance, IMED takes into account the spatial
relationships of pixels. Therefore, it is robust to small perturbation.

In [13], it has been shown SSD is not a good metric to measure
the image distance and a good one should contain the information
of pixel distances. If the metric coefficients depend properly on the
pixel distances, the computed Euclidean distance is insensitive to
small deformation.

Suppose that two images z and t are rasterized to form two vec-
tors, z = (z1, z2, · · · , zMN ), t = (t1, t2, · · · , tMN ), where z is the
tracking result and t is the template, then the IMED is given by

d2
IME(z, t) =

1

2π

MN∑
i,j=1

exp{−|Pi−Pj |2/2}(zi−ti)(zj−tj). (4)

The probability of the presence of the tracked object given the
template is written as

pIME(z|t) = exp{−d2
IME(z, t)} (5)

which shows that small distance gives high probability.

3.2. Image Weighted Distance

When we use a rectangle or ellipse to select the region of interest, we
inevitably include some background in the region of interest. The
background will contaminate the template and contribute to tracking
failure. Inspired by [2], we propose an image weighted distance
method to overcome this problem.

Suppose w and h are the width and height of the image, respec-
tively. The weight for the pixel at location (x, y) is

w(x, y) = 1− 1

2
{(x− x0

w/2
)2 + (

y − y0

h/2
)2} (6)

where x0 and y0 is the center of the template. The weights are
smaller for pixels that are farther from the center. Using these weights
increases the robustness of matching since the peripheral pixels are
the least reliable, being often affected by occlusion, clutter or inter-
ference from the background. The weight function is a 2D Gaussian
kernel.

The probability of the object being tracked given the template is

pIMW (z|t) = exp{−d2
IMW (z, t)} (7)

where d2
IMW (z, t) =

∑MN
i=1 wi(zi − ti)

2.

3.3. Template Update

The object appearance remains the same only for a certain period of
time, but eventually the template is no longer an accurate model of
the object appearance. If we do not update the template, the template
cannot capture the variations in object appearance due to illumina-
tion or pose variations. If we update the template too often, small er-
rors are introduced each time the template is updated. The errors are
accumulated and the tracker drifts from the object. We propose an
effective template updating strategy which achieves a compromise.

We attempt to overcome the drift problem by introducing a li-
brary of templates and using mixed probabilities. The mixture of
Gaussian distributions is used in [14] to simultaneously model and
track feature sets. The tracking probability for template matching
given the template library t1:K , p(z|t1:K), is written as

p(z|t1:K) = pIME(z|t1:K) pIMW (z|t1:K)

= {
K∑

k=1

wk ∗ pIME(z|tk)} {
K∑

k=1

wk ∗ pIMW (z|tk)} (8)

where K is the number of templates in the library and wk is the
weight assigned to the template tk.

When the tracker starts working, the template is added to the
library when the probability p(z|t1:k) is below some threshold p0.
After the number of templates in the library reaches the maximum
value K, the template with the smallest weight is replaced by the
tracking result when p(z|t1:k) < p0. The weight of each model in-
creases when the appearance of the tracking object and template is
close enough and decreases vice versa. In general, newly-added tem-
plates are less reliable than the old ones. The variation in structure
and appearance may be due to transient environmental effects. To
model the effect of a particular template gaining “trust”, its weight
is increased each time p(z|tk)k=1,2,··· ,K exceeds some threshold.
The increase is at the expense of the other templates. We apply the
strategy suggested in [14] to update the weight of the mixture model
and the weights are updated as

wf+1
i =

{
(wf

i + α) 1
1+α

if p(z|ti) > pi0

wf
i

1
1+α

otherwise,
(9)
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where pi0 is the threshold for template ti, α is the learning rate such
that α ∈ (0, 1), and f is the frame number. The value of α sets
the rate at which component rankings are changed and outmoded
representations are removed and “trust” in new representations is
gained.

4. INCREMENTAL NONLINEAR SUBSPACE UPDATE

PCA uses a low dimensional space to approximate a high dimen-
sional space, but it restricts itself to a linear setting, where high-
order statistical information is discarded. Kernel PCA overcomes
this disadvantage by using a ‘kernel trick’. The essential idea of
the kernel PCA is to avoid the direct evaluation of the required dot
product in a high-dimensional feature space using the kernel func-
tion. Hence, no explicit nonlinear mapping function projecting the
data from the original space to the feature space is needed. Since a
nonlinear function is used, albeit in an implicit fashion, high-order
statistical information is captured. Probabilistic PCA [15] gives a
probabilistic output by decomposing the data space into two sub-
spaces, a principle subspace and a residual subspace. Kernel PCA
is implemented by mapping the data space to a higher dimensional
space using a nonlinear function. We propose an approach that ana-
lyzes kernel principal components in a probabilistic manner by using
probabilistic kernel PCA.

For each frame, we need to update the current eigenbasis with
the tracking result. In [16], the eigenbasis is updated without storing
the covariances or the previous training examples using the proba-
bilistic PCA for tracking. We show that when we use probabilistic
kernel PCA, the eigenbasis can be incrementally updated very ef-
ficiently by augmenting the kernel Gram matrix with one row and
column.

Below, we review the probabilistic kernel PCA and give the de-
tails on updating the kernel Gram matrix.

4.1. Probabilistic Analysis of Kernel Principal Components

Suppose that x1, x2, · · · , xN are the given training samples in the
original data space R

q. Kernel PCA operates in a higher dimensional
feature space induced by a nonlinear mapping function φ : R

q →
R

f , where f > q and f could even be infinite.
Probabilistic analysis assumes that the data in the feature space

follows a special factor analysis model which related an f -dimensional
data φ(x) to a latent q-dimensional variable z as

φ(x) = μ + Wz + ε (10)

where z ∼ N(0, Iq), ε ∼ N(0, σ2If ), and W is a f × q loading
matrix. Therefore, φ(x) ∼ N(μ, Σ), where Σ = WW T + σ2If .

The probability has the form

p(φ(x)) = (2π)−d/2|Σ|−1/2exp{−1

2
(φ(x)−μ)TΣ−1(φ(x)−μ)}

(11)
The maximum likelihood estimates for μ and W are given by

μ =
1

N

N∑
n=1

φ(xn), W = Uq(Λq − σ2Iq)
1/2R (12)

where R is any q × q orthogonal matrix, and Uq and Λq contain
the top q eigenvectors and eigenvalues of the C matrix, where C =
N−1

∑N
n=1(φn − φ0)(φn − φ0)

T , where φ0 = μ, φn = φ(xn).

The MLE for σ2 is approximated as

σ2 � 1

f − q
{tr(K)− tr(Λq)} (13)

where the (i, j)th entry of the kernel Gram matrix K can be calcu-
lated as follows:

Kij = φ(xi)
T φ(xj) = k(xi, xj) (14)

4.2. Incremental Update of Kernel Gram Matrix

The nonlinear space is divided into M nonlinear subspaces, each
subspace modelled by probabilistic kernel PCA. The final probabil-
ity of the tracking object z is defined as a mixture distribution:

pKPCA(φ(z)) =

M∑
m=1

wm ∗ pm(φ(z)) (15)

where pm(φ(z)) is the probability of kernel PCA in the mth sub-
space and wm is the mixture weight. The most-recent tracking re-
sult is added to the subspace which has the maximum probability
pm(φ(z)). In order to obtain the probability of tracking, we only
need to update the kernel Gram matrix K. The kernel Gram matrix
is updated as:

Kf+1 =

(
Kf k(x, y)

kT (x, y) k(y, y)

)
(16)

where f is the index of the frame and x1, x2, · · · , xn are all the
points in the subspace, y is the current tracking result. k(x, y) =
(k(x1, y), k(x2, y), · · · , k(xn, y))T . This requires a lot of storage
space because one has to save all the previous tracking results to
calculate the kernel Gram matrix. To overcome this problem, we set
a limit on the number of samples in each cluster. The oldest sample
is discarded to leave the space for the most-recent one. We follow
the same strategy used for template matching to update the weights
for the subspaces.

5. EXPERIMENTS

We conducted numerous experiments to test whether our proposed
tracking algorithm performs well in terms of following the object
position and updating the appearance model. The tracking area is de-
scribed by a rectangular window modeled by a 5-dimensional state
vector X = [x0, y0, w, h, θ], where (x0, y0) represents the centroid
of the tracking window, (w, h) are the width and height of the track-
ing window, and θ is the 2D rotation angle of the tracking window.
Currently the parameters are initialized manually.

In the first experiment, two infrared image sequences consisting
of 720× 480 color videos, recorded at 30 frames/second were used.
The target-to-background contrast is very low and the noise level is
high for the IR images. Figure 1 shows the results of our tracker(left
column) and the tracker using SSD in the template matching(right
column). The second tracker is not robust to background clutter and
includes the black bar as foreground when the vehicle passes it. Fig-
ure 2 contains the results of our tracker(left column) and the tracker
using a naive template update strategy which updates template at
each frame(right column). The presence of dust and smoke adds dif-
ficulties to the tracking of the vehicle. The second tracker sticks to
the light background and cannot recover. Our method avoids these
possibilities and is effective under low contrast and noisy situation
and is robust to the background clutter.
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Fig. 1. Left column: Results of our tracker. Right column: Results
of the tracker using SSD in the template matching

Fig. 2. Left column: Results of our tracker. Right column: the
tracker using a naive template update strategy which updates tem-
plate at each frame.

The third video sequence is from Carnegie Mellon University.
The vehicle has a long shadow and turns a corner. Figure 3 shows the
results of our tracker(top row) and the tracker without using subspace
technique(bottom row). There is large scale change as the camera
zooms in and out. The tracker without using subspace technique
cannot handle the pose variation of the vehicle properly.

6. SUMMARY AND CONCLUSIONS

In this paper, we have presented an efficient and robust object track-
ing algorithm that uses template matching and incremental nonlinear
subspace updating, based on the particle filter. We have demon-
strated our algorithm for tracking various challenging sequences.
Our algorithm requires no training data and can adaptively update
the template and the subspace characterizing tracking history. It can
be applied and play an important role on certain consumer electron-
ics applications such as surveillance systems, user assisted metadata
generation for consumer video, and so on.
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